Technology at Work: What You Need to Compete

Twitter icon
Facebook icon
LinkedIn icon
e-mail icon
Google icon

Knowledge to facilitate care is the objective of healthcare. And technology is the means to acquire, build, communicate and mine that knowledge. The choice of which technology building blocks are right for each healthcare facility is a topic of near-constant debate, strategy, diligence and business planning. But not all solutions pack an equally strong punch, and not all healthcare facilities want and need the same technologies. The right technology at the right time deployed with the right infrastructure can deliver the medicine that healthcare needs—impressive efficiency gains; earlier, more accurate diagnostic data; accelerated patient care and reduced costs. One winning solution is RIS/PACS, saving sites like Alamance Regional Medical Center in Burlington, N.C., $500,000 annually. Similarly, speech recognition software slashes report turnaround to a bare minimum, with many sites delivering preliminary results in 10 minutes.

With competition for patients and providers at an all time high and budgets coming under the hatchet, radiology departments need to focus on solutions like these that improve efficiency and the bottom line to provide a competitive edge.

As 2008 winds down, we’re examining the year’s top technologies as identified by our readers, visiting with seasoned users across the country to discover how they’ve tapped into top technologies and what they’ve gained in the process. The critical technologies of this year and next run the gamut from imaging solutions to IT. On the modality side, Health Imaging & IT readers cite DR, breast MRI, CT and ultrasound as the year’s most important imaging solutions. Data storage, RIS, speech, cardiology PACS, advanced visualization and IT integration top the IT list.

Cardiac CT: The paradigm shift

Since bursting onto the imaging horizon in 2003, cardiac CT has seen tremendous technical progress in scanner configurations and software development. Yet the paradigm for diagnosing coronary artery disease has remained relatively unchanged. Patients aren’t identified or treated until they become symptomatic. What’s missing is a mechanism to identify asymptomatic patients with occult coronary disease so physicians can initiate aggressive therapy to prevent morbidity and mortality. What’s more, first-generation cardiac CT limits physicians to anatomy, detecting blockages, but not determining physiological significance. Cardiac imaging’s newest volumetric CT weapons re-invent the cardiac paradigm.

The Cardiovascular Research Institute at Washington Hospital Center in Washington, D.C., a beta site for Philips Healthcare 256-slice Brilliance iCT scanner, is investigating the potential of the latest CT technology. One primary question asks what volumetric scanners offer over their 64-slice peers. Do they open the door to scanning of asymptomatic patients?

“The problem with 64-slice CT is radiation dose,” says Guy Weigold, MD, director of cardiac CT. It’s in the range of other cardiac scans, but remains somewhat high. Consequently, sites need to be somewhat selective about referring patients for cardiac CT and limit scans to symptomatic patients who require an investigative workup.

Volumetric CT solutions deliver advances that may make it possible to extend cardiac CT to asymptomatic patients. Systems like Philips Brilliance iCT and Toshiba America Medical Systems AquilionOne slash scan time to a few seconds, imaging the heart in a single heartbeat, which means image quality is less likely to be degraded by cardiac changes during the scan. “It better freezes the heart and improves image quality,” sums Weigold.

St. Elizabeth Medical Center in Edgewood, Ky., has seen new doors opens since installing an AquilionOne in July 2008. “The biggest advantage of the AquilionOne is single heartbeat imaging,” says Jeffrey Dardinger, MD, director of vascular institute imaging. By imaging the heart in one rotation, the system improves temporal resolution and image quality, which improves on current cardiac CT and makes possible cardiac perfusion imaging. “We can watch cardiac blood flow and determine if a blockage reduces blood flow to the myocardium,” explains Dardinger. Equally important, higher slice solutions reduce radiation dose.

As researchers gather data, they are refining scanning protocols for new systems. Some sites leverage shorter scan times to streamline operations. A typical 64-slice scan patient requires beta blockers, which stretches the scan appointment to one hour and requires