It's all in the Ergonomics: People-friendly Design for the Reading Room

Twitter icon
Facebook icon
LinkedIn icon
e-mail icon
Google icon

As imaging studies have morphed from analog to digital, many departments responded merely by replacing lightboxes with computer screens in the same reading room space configurations. This approach has yielded widespread radiologist and technologist complaints of eyestrain and neck, back and wrist pain.

"As time goes on, I see radiologists who are so affected by ergonomic issues that it threatens whether or not they can actually continue working as radiologists," says Eliot Siegel, MD, professor and vice chairman of diagnostic radiology at the University of Maryland and chief of imaging for the Veterans Administration Maryland Health Systems. "Even amongst radiologists who are not experiencing these problemsÃ?¢?Ã?¦given the onslaught of additional images and additional volume of imaging, how can we cope and still maintain our productivity and proficiency without increasing our stress levels? How do we minimize injuries to ourselves and maximize efficiency?"

Siegel's group and others have engaged in addressing ergonomic issues for a number of years, inspired by research of experts outside the realm of radiology including Alan Hedge at Cornell University. Siegel cites as an example Hedge's 20-20-20 rule which suggests that a person working at a computer workstation should stand up or at least stop every 20 minutes to gaze at least 20 feet away for at least 20 seconds to minimize eye strain.

Susan Murphey, BS, RDMS, RDCS, CECD, director of operations for Sound Ergonomics, and her experienced team provide education and consultation not only in the realm of sonography, but they have begun addressing the issues that arise in the PACS environment as well.

"As more departments transition to filmless, the work activity becomes minimized to sitting in front of a PACS workstation for eight to 10 hours a day," says Murphey.  "Anytime you decrease your movement, you'll affect your muscles."  If reading activities shift from a workflow that requires movement around the department and elsewhere to sitting in front of a computer for long periods of time and the reading area has not been set up with ergonomics in mind, the radiologists, technologists and others will definitely feel the result.

Besides the problematic restricted workspace, Siegel notes that many radiologists are using ergonomically incorrect sitting or standing positions for reading images because they should be looking slightly down instead of looking slightly up at monitors to reduce neck strain.

There are several core principles that lie at the heart of ergonomic design of reading rooms.

Foundations of ergonomics

As the science of proper body mechanics and postural alignment that not only identifies risk factors but also seeks to reduce incidence of injury, ergonomics is based on principles that encompass the entirety of the environment under consideration. Such issues as lighting, adjustability of workstations, noise control, air quality and reduction of repetitive motions comprise the key elements to consider in reading room design.

Alan Hedge, PhD, professor of ergonomics at Cornell University and research professor in the department of biomedical and chemical engineering at Syracuse University in New York, urges radiology professionals to consult with experts in ergonomics as they design digital reading rooms. Decisions are made in purchasing millions of dollars worth of equipment based on the capabilities of the system without regard to how and where it will be used. Considering that the quality of the diagnostic outcome is primarily a function of the radiologist and not the capabilities of the equipment, it is easy to create a dysfunctional system if ergonomics principles are ignored.

Lighting: Hedge suggests that since the job of the radiologist involves close inspection of imaging studies, that if environmental lighting is designed improperly, the outcome will fail while causing problems for the radiology staff. Lighting includes providing the correct spectrum coupled with appropriate lighting levels and direction of the source to avoid glare on a computer screen. Because an imaging study may require reading the image from a monitor while referring to a paper requisition or medical record, some type of supplemental task lighting often proves essential.

Since a busy radiology department may include practitioners of all age ranges, the amount and types of light must be adjustable. Actually, a 30-year-old radiologist usually requires about half as much light