Meeting Molecular Imaging's Challenges

Twitter icon
Facebook icon
LinkedIn icon
e-mail icon
Google icon

Managing, distributing, navigating and storing molecular imaging studies is the next horizon to conquer in taking full advantage of these complex images that are increasing in clinical significance.

Bruce Line, MD, director of nuclear medicine at the University of Maryland (College Park, Md.), predicts that clinical molecular imaging, or PET-CT hybrid or fusion imaging, will fuel a tremendous jump in radiologists' clinical problem-solving capabilities with payoffs in oncology and nuclear cardiology. The molecular imaging umbrella can cover SPECT-CT and MRI as well. Regardless of the modalities employed, sites that have taken the lead in clinical molecular imaging are reporting some significant challenges in image distribution, management, navigation and storage. These challenges need to be overcome before molecular imaging can be seamlessly integrated in the radiology department. Consider:

Most PACS workstations are not designed to view molecular images. So how do clinicians view these information-rich datasets?Even with fast Ethernet networks, sending a 400 megabyte dataset across the hospital can be a bit taxing. How can sites route molecular images where they need to be now and in the future?

Radiologists need tools to rapidly navigate through molecular imaging data and mine the rich information available in the images, but the technology to enable sophisticated interrogation is not yet available.

"In general, the world is still catching up with the concepts of hybrid imaging and how to [distribute and] view these images," Line says. As molecular imaging moves into the mainstream, viable solutions to these challenges become more critical. Jeffrey Leal, research associate at Johns Hopkins University School of Medicine in Baltimore, explains, "Molecular imaging is really taking off because of fusion imaging, and it will be the central focus of radiology in the next 10 years."

ISSUES IN IMAGE VIEWING & NAVIGATION

Johns Hopkins University is on the cutting edge of molecular imaging with four SPECT-CT cameras, a PET-CT scanner and a PET camera. And clinicians are rapidly discovering and embracing molecular imaging. The hitch is image viewing. In an ideal world, molecular images would flow into the PACS environment so that clinicians could readily access the information for clinical decision-making. But Leal confirms, "Traditional PACS aren't designed to handle all of the components of molecular imaging [fusion scanners, SPECT, CT, etc.]." Line agrees and adds, "To date, there aren't good standards for fusion imaging that allow DICOM transfers of fusion images to a conventional PACS workstation." At Johns Hopkins, the nuclear medicine department receives daily calls from physicians who want to see molecular images but can't because their PACS workstations aren't capable of displaying them.

Johns Hopkins has resorted to old-fashioned solutions to this 21st century challenge. In some cases, the nuclear medicine department prints hardcopies of fusion images for physicians, which is hardly a timely or cost-effective option. In others, the physician treks to the nuclear medicine department or reading room to view images, which takes up valuable physician time, and once again, thwarts real-time decision-making. Finally, some software systems allow users to create a CD of molecular images. Leal notes, "These tend to be less than optimal. They're typically static images that don't give physicians the flexibility to peruse the data. Physicians should be able to peruse and quantify this data."

At the neighboring University of Maryland, the status of molecular imaging image viewing and distribution is similar. That is, radiologists can view the CT portion of PET-CT images via the PACS archive and infrastructure, but they must visit the nuclear medicine department to discuss and view findings of the combined scan. Furthermore, there are geographic distribution challenges. When the results of a full body PET-CT are distributed to various sections - neuroradiology, chest and abdominal radiology - radiologists find it difficult to see the same data as the reporting radiologist in nuclear medicine because they aren't viewing the images in the same way. "Radiologists need some way to view and manage fused data on a DICOM workstation in interrogative ways," Line says.

NETWORK REQUIREMENTS

Line maintains that the current network infrastructure at the University of Maryland is sufficient for the upcoming onslaught of molecular images. "Speed