Ultrasound PACS: The Ultimate Solution

Twitter icon
Facebook icon
LinkedIn icon
e-mail icon
Google icon

Whatever your choice - dedicated or multimodality ultrasound PACS - the technology continues to win user praise across medical specialties. All users agree: There's no better way to share ultrasound images, information and expertise than via PACS. And the view can only improve as more facilities look to the capabilities of 3D ultrasound to get more information by creating 2D slices without requiring increased examination time for patients.

Ultrasound PACS continues to impact care for pediatric, obstetric-gynecology and cardiac patients as technologists capture, share and archive images with ease. For children whose bodies scan easily, for ob-gyn patients who need monitoring and for cardiology patients whose arteries require a thorough but non-invasive means of viewing problems, ultrasound PACS captures the views and stores them online, nearline or offline - depending on caregivers' needs. The images and reports are literally at the sonographer's or radiologist's fingertips, for as long as needed.


At Mayo Clinic in Rochester, Minn., ultrasound PACS not only has improved efficiency, increased productivity and cut costs, it has allowed the patient itinerary to be shortened substantially, according to Bijoy Khandheria, M.D., director of cardiology and chairman of information technology. Carotid and vascular imaging stored on PACS has reduced transit time by eliminating the need to physically transport images from one point to another. Mayo performs 50,000 to 60,000 vascular studies per year and uses an ALI ultrasound PAC system. Images are shared among several group practices around the country and with the regional Mayo Health System.

"We have an MR and CT PAC system because the number of films generated at Mayo is too large to fit into a multimodality PAC system, so we have multiple PAC systems for different modalities, and overarching them is the radiology information management system," Khandheria says.

If you were to have an x-ray done and a CT of the carotid, the system knows that patient "A," for example, with identifier "A" has an ultrasound image on one system and other accompanying scans on a second or third system. "When I'm sitting at a desktop and want to pull those images, it would show up on a list and would [point] me to the ultrasound study, so it's a virtual multimodality PACS, not a single PACS."

The challenge of storing high frame rate, real-time images has been a reason that ultrasound PACS has lagged behind other modalities in managing images electronically. Cardiac ultrasound moves at 30 frames per second. For 3D ultrasound, the rate increases to 60 frames per second. "The challenges of storing high frame rates in real time are a little different from storing high-volume or high-density data that CT or MR generates," Khandheria says. "Ultrasound PACS is a little more difficult, and DICOM has been a little slower in the ultrasound field than it has in x-ray, CT and MR."

To retrieve real-time, 30-frames-per-second images, high bandwidth transmission media are needed. "Small Ethernet is good enough, but it's not really fast enough," Khandheria says. "You need faster transport media and faster pipes, so that's been a challenge. One requires 100 gigabyte Ethernet or ATM [Asynchronous Transfer Mode] networks to make this happen in real time. You need workstations that are fast as well, two or higher gigahertz chips." Workstations, such as the Barco monitors used at the University of Alabama at Birmingham Hospital, in conjunction with Siemens Acuson's KinetDx dedicated ultrasound PACS, provide views of the 20,000 studies performed per year at the hospital and clinic.

"The ultrasound workstation [has] dedicated monitors," says Felix Hester, RVT, RDMS, RT, radiology ultrasound supervisor. "The ultrasound images have 24-bit color, and most radiology PACS cannot support that type of color display…specific to ultrasound. Ultrasound needs the high resolution of gray scale imaging and the crispness that is needed to display color. That's what sets PACS monitors apart from the others." KinetDx has 380 megabytes of RAM. Image access is instantaneous. The hospital system has a fiber optic network, providing a hundred megabits per second.

"Being able to look at [dynamic] clips [as opposed to static shots] was one of our criteria at the time we set out to look at PACS," Hester says. The ability to view clips has enabled faster exams, increased throughput and increased accuracy of diagnoses