Fitting the X-ray Retrofit into the Network

Twitter icon
Facebook icon
LinkedIn icon
e-mail icon
Google icon

It's not brand-new, but that retrofitted x-ray system is new to you - and to your computer network. And like anything that needs to be integrated into your network, retrofits invite questions of connectivity and compatibility.

At the same time, the process of retrofitting existing x-ray equipment prompts technological considerations of its own.

The key to retrofitting is to adequately, thoroughly audit your current system and systems," advises Steve Walsh, general manager of Huestis Medical, a value-added reseller (VAR) operating largely through a dealer network. "What piece of equipment do you want to upgrade? What's the longevity, the life span, of that equipment? Does it make sense to put this new digital [flat-panel] component on it?

"What kinds of systems are in the hospital now as far as HIS [hospital information system], RIS [radiology information system] PACS [picture archiving and communications system], miniPACS?" he goes on. "Then, with the assistance of your retrofit vendor or supplier, work through your different options for hard-copy printing and network interfaces, making sure compatibility issues are touched on, primarily connectivity issues, such as, how you are going to get a hard-copy printout, and if your fluoroscopy unit is going to connect to your PACS, HIS or RIS."

If it works once, why not try it again? Mercy Medical Center in Cedar Rapids, Iowa, asked all those questions - in 2001 and again this year - and each time decided that a retrofit from Canon Medical Systems provided the best answers. One of two hospitals serving the city of Cedar Rapids, population 150,000, Mercy Medical's first x-ray retrofit integrated a Canon CXDI-31 digital radiography system with a 1994 Advantx generator and tube from GE Medical Systems. Its second, a few months ago, brought together a Canon CXDI-40G and a 1997 rad room from Philips Medical Systems. A third room, outfitted in 1999, was an original, not retrofitted, Canon CXDI-31-Trex installation.

The CDXI-31 flat-panel detector system has a 9-inch by 11-inch imaging area especially designed for pediatric and orthopedic applications, and offers flexible positioning capabilities, according to Elaine Proseus, Western region team leader and government accounts for Canon Medical Systems. The CXDI-40G, which replaces the CXDI-22, features a flat-panel detector capable of taking 17-inch by 17-inch images. A compact unit whose new smaller housing (21.65" x 21.65" x 2.65" versus 21.65" x 25.39" x 2.71" for its predecessor) more easily accommodates retrofit installations, the CXDI-40G also is available as a full system with bucky table, upright tilting wall stand, universal stand, ceiling-suspended multi-positioning unit, operator's console, control computer and power supply.

"We retrofitted to save money, and we wanted some consistency - that way the interface to the technology is the same," says Duane Dzingle, Mercy Medical's director of radiology. "When I was looking, the OEMs (original equipment manufacturers) wouldn't retrofit their own equipment. We were happy with the images [from the Canon-Trex installation], and Canon brokered the change."

Dzingle's plans for consistency extended to the purchase of a PACS and 10 PACS workstations for diagnostic and clinical use - all from Canon. The package deal also included storage: six months on-line, short-term storage and a Qualstar jukebox with 36 terabyte AIT (Advanced Intelligent Tape) long-term storage.

According to Dzingle, the Canon PACS works as a dispersed, decentralized server to send images from the three DR rooms to designated workstations. If a workstation were to go down, "I just hit a button" to reroute images to another, he says. Of the 120,000 radiology procedures the department performs a year, 50,000 are performed on retrofit DR.

Initially the radiology department worked without the retrofits' being integrated with the hospital's RIS and HIS - both Meditech products. Dzingle had no hands-on role in the integration; however, he indicates he helped make sure that Canon worked closely with Meditech to ensure HL7-to-DICOM-and-back-again conversions involving the RIS, HIS and PACS on the hospital's network: a 100 MB fiber optic backbone running from floor to floor. Copper Ethernet runs from radiology to the workstations.

"We have plans to expand [our network] to 1 GB; we put [in] switches for our PACS and DR," he says. "But the thing there is you have to make sure the vendor has a 1 gigabit output from their